81 research outputs found

    Fast estimation of the difference between two PAM/JTT evolutionary distances in triplets of homologous sequences

    Get PDF
    BACKGROUND: The estimation of the difference between two evolutionary distances within a triplet of homologs is a common operation that is used for example to determine which of two sequences is closer to a third one. The most accurate method is currently maximum likelihood over the entire triplet. However, this approach is relatively time consuming. RESULTS: We show that an alternative estimator, based on pairwise estimates and therefore much faster to compute, has almost the same statistical power as the maximum likelihood estimator. We also provide a numerical approximation for its variance, which could otherwise only be estimated through an expensive re-sampling approach such as bootstrapping. An extensive simulation demonstrates that the approximation delivers precise confidence intervals. To illustrate the possible applications of these results, we show how they improve the detection of asymmetric evolution, and the identification of the closest relative to a given sequence in a group of homologs. CONCLUSION: The results presented in this paper constitute a basis for large-scale protein cross-comparisons of pairwise evolutionary distances

    Practical Evaluation of Lempel-Ziv-78 and Lempel-Ziv-Welch Tries

    Full text link
    We present the first thorough practical study of the Lempel-Ziv-78 and the Lempel-Ziv-Welch computation based on trie data structures. With a careful selection of trie representations we can beat well-tuned popular trie data structures like Judy, m-Bonsai or Cedar

    Gene fusions and gene duplications: relevance to genomic annotation and functional analysis

    Get PDF
    BACKGROUND: Escherichia coli a model organism provides information for annotation of other genomes. Our analysis of its genome has shown that proteins encoded by fused genes need special attention. Such composite (multimodular) proteins consist of two or more components (modules) encoding distinct functions. Multimodular proteins have been found to complicate both annotation and generation of sequence similar groups. Previous work overstated the number of multimodular proteins in E. coli. This work corrects the identification of modules by including sequence information from proteins in 50 sequenced microbial genomes. RESULTS: Multimodular E. coli K-12 proteins were identified from sequence similarities between their component modules and non-fused proteins in 50 genomes and from the literature. We found 109 multimodular proteins in E. coli containing either two or three modules. Most modules had standalone sequence relatives in other genomes. The separated modules together with all the single (un-fused) proteins constitute the sum of all unimodular proteins of E. coli. Pairwise sequence relationships among all E. coli unimodular proteins generated 490 sequence similar, paralogous groups. Groups ranged in size from 92 to 2 members and had varying degrees of relatedness among their members. Some E. coli enzyme groups were compared to homologs in other bacterial genomes. CONCLUSION: The deleterious effects of multimodular proteins on annotation and on the formation of groups of paralogs are emphasized. To improve annotation results, all multimodular proteins in an organism should be detected and when known each function should be connected with its location in the sequence of the protein. When transferring functions by sequence similarity, alignment locations must be noted, particularly when alignments cover only part of the sequences, in order to enable transfer of the correct function. Separating multimodular proteins into module units makes it possible to generate protein groups related by both sequence and function, avoiding mixing of unrelated sequences. Organisms differ in sizes of groups of sequence-related proteins. A sample comparison of orthologs to selected E. coli paralogous groups correlates with known physiological and taxonomic relationships between the organisms

    Grammar-based distance in progressive multiple sequence alignment

    Get PDF
    Background: We propose a multiple sequence alignment (MSA) algorithm and compare the alignment-quality and execution-time of the proposed algorithm with that of existing algorithms. The proposed progressive alignment algorithm uses a grammar-based distance metric to determine the order in which biological sequences are to be pairwise aligned. The progressive alignment occurs via pairwise aligning new sequences with an ensemble of the sequences previously aligned. Results: The performance of the proposed algorithm is validated via comparison to popular progressive multiple alignment approaches, ClustalW and T-Coffee, and to the more recently developed algorithms MAFFT, MUSCLE, Kalign, and PSAlign using the BAliBASE 3.0 database of amino acid alignment files and a set of longer sequences generated by Rose software. The proposed algorithm has successfully built multiple alignments comparable to other programs with significant improvements in running time. The results are especially striking for large datasets. Conclusion: We introduce a computationally efficient progressive alignment algorithm using a grammar based sequence distance particularly useful in aligning large datasets

    Optimizing substitution matrix choice and gap parameters for sequence alignment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While substitution matrices can readily be computed from reference alignments, it is challenging to compute optimal or approximately optimal gap penalties. It is also not well understood which substitution matrices are the most effective when alignment accuracy is the goal rather than homolog recognition. Here a new parameter optimization procedure, POP, is described and applied to the problems of optimizing gap penalties and selecting substitution matrices for pair-wise global protein alignments.</p> <p>Results</p> <p>POP is compared to a recent method due to Kim and Kececioglu and found to achieve from 0.2% to 1.3% higher accuracies on pair-wise benchmarks extracted from BALIBASE. The VTML matrix series is shown to be the most accurate on several global pair-wise alignment benchmarks, with VTML200 giving best or close to the best performance in all tests. BLOSUM matrices are found to be slightly inferior, even with the marginal improvements in the bug-fixed RBLOSUM series. The PAM series is significantly worse, giving accuracies typically 2% less than VTML. Integer rounding is found to cause slight degradations in accuracy. No evidence is found that selecting a matrix based on sequence divergence improves accuracy, suggesting that the use of this heuristic in CLUSTALW may be ineffective. Using VTML200 is found to improve the accuracy of CLUSTALW by 8% on BALIBASE and 5% on PREFAB.</p> <p>Conclusion</p> <p>The hypothesis that more accurate alignments of distantly related sequences may be achieved using low-identity matrices is shown to be false for commonly used matrix types. Source code and test data is freely available from the author's web site at <url>http://www.drive5.com/pop</url>.</p

    Retrieving sequences of enzymes experimentally characterized but erroneously annotated : the case of the putrescine carbamoyltransferase

    Get PDF
    BACKGROUND: Annotating genomes remains an hazardous task. Mistakes or gaps in such a complex process may occur when relevant knowledge is ignored, whether lost, forgotten or overlooked. This paper exemplifies an approach which could help to ressucitate such meaningful data. RESULTS: We show that a set of closely related sequences which have been annotated as ornithine carbamoyltransferases are actually putrescine carbamoyltransferases. This demonstration is based on the following points : (i) use of enzymatic data which had been overlooked, (ii) rediscovery of a short NH(2)-terminal sequence allowing to reannotate a wrongly annotated ornithine carbamoyltransferase as a putrescine carbamoyltransferase, (iii) identification of conserved motifs allowing to distinguish unambiguously between the two kinds of carbamoyltransferases, and (iv) comparative study of the gene context of these different sequences. CONCLUSIONS: We explain why this specific case of misannotation had not yet been described and draw attention to the fact that analogous instances must be rather frequent. We urge to be especially cautious when high sequence similarity is coupled with an apparent lack of biochemical information. Moreover, from the point of view of genome annotation, proteins which have been studied experimentally but are not correlated with sequence data in current databases qualify as "orphans", just as unassigned genomic open reading frames do. The strategy we used in this paper to bridge such gaps in knowledge could work whenever it is possible to collect a body of facts about experimental data, homology, unnoticed sequence data, and accurate informations about gene context

    Joint Evolutionary Trees: A Large-Scale Method To Predict Protein Interfaces Based on Sequence Sampling

    Get PDF
    The Joint Evolutionary Trees (JET) method detects protein interfaces, the core residues involved in the folding process, and residues susceptible to site-directed mutagenesis and relevant to molecular recognition. The approach, based on the Evolutionary Trace (ET) method, introduces a novel way to treat evolutionary information. Families of homologous sequences are analyzed through a Gibbs-like sampling of distance trees to reduce effects of erroneous multiple alignment and impacts of weakly homologous sequences on distance tree construction. The sampling method makes sequence analysis more sensitive to functional and structural importance of individual residues by avoiding effects of the overrepresentation of highly homologous sequences and improves computational efficiency. A carefully designed clustering method is parametrized on the target structure to detect and extend patches on protein surfaces into predicted interaction sites. Clustering takes into account residues' physical-chemical properties as well as conservation. Large-scale application of JET requires the system to be adjustable for different datasets and to guarantee predictions even if the signal is low. Flexibility was achieved by a careful treatment of the number of retrieved sequences, the amino acid distance between sequences, and the selective thresholds for cluster identification. An iterative version of JET (iJET) that guarantees finding the most likely interface residues is proposed as the appropriate tool for large-scale predictions. Tests are carried out on the Huang database of 62 heterodimer, homodimer, and transient complexes and on 265 interfaces belonging to signal transduction proteins, enzymes, inhibitors, antibodies, antigens, and others. A specific set of proteins chosen for their special functional and structural properties illustrate JET behavior on a large variety of interactions covering proteins, ligands, DNA, and RNA. JET is compared at a large scale to ET and to Consurf, Rate4Site, siteFiNDER|3D, and SCORECONS on specific structures. A significant improvement in performance and computational efficiency is shown
    • …
    corecore